sexta-feira, 7 de fevereiro de 2014

Subconjunto de Z

See the definition of subset: A set A is a subset of set B if all elements of A are also elements B.Simplificando subset is one that has a set inside.




We will highlight, then some subset of Z and their representations.



Sets of natural numbers:
        | N = {0, +1, +2, +3, +4, +5, ...}


  Set of non-negative integers:
         Z + = {0, +1, +2, +3, +4 = 5, ...}


All non-zero integers
        Z * Z = {0} = {..., -3, -2, -1, +1, +2, +3, ...}



Set the positive integers:


       Z * = {+ +1, +2, +3, ...}


Set the non-positive integers:


       Z_ = {... -3, -2, -1,0}


Set the negative integers:


       _ * Z = {..., -3, -2, -1,0}


Remarks:



1-When you are positive numbers need not put the + sign.



56 = 56
78 = 78
+32 = 32

2-The asterisk which are the signs (| N *, Z * Z * + Z * _) means that zero does not belong to these conjuntos.Exemplos:


| N * = {+1, +2, +3, ...}
Z * _ = {... -3, -2, -1}

3-Z / + is set equal to the set | N; Z / + = | N


4 - | N is a subset Z /: | Z c N /


Nenhum comentário:

Postar um comentário